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Figure 1: Novel view synthesis with specular reflection. From left to right: Ref-NeRF [Verbin et al. 2022], Neural Point
Catacaustics [Kopanas et al. 2022], 3D Gaussian Splatting [Kerbl et al. 2023], GaussianShader [Jiang et al. 2023], our method,
ground-truth. We render high quality reflection at a speed comparable with the original reflection-oblivious 3D Gaussian
Splatting. The key contribution is a deferred shading pipeline, which offers high-precision shading in real-time and enables
gradual propagation of correct normal estimation.

ABSTRACT
The advent of neural and Gaussian-based radiance field methods
have achieved great success in the field of novel view synthesis.
However, specular reflection remains non-trivial, as the high fre-
quency radiance field is notoriously difficult to fit stably and ac-
curately. We present a deferred shading method to effectively ren-
der specular reflection with Gaussian splatting. The key challenge
comes from the environment map reflection model, which requires
accurate surface normal while simultaneously bottlenecks normal
estimation with discontinuous gradients. We leverage the per-pixel
reflection gradients generated by deferred shading to bridge the
optimization process of neighboring Gaussians, allowing nearly
correct normal estimations to gradually propagate and eventually
spread over all reflective objects. Our method significantly out-
performs state-of-the-art techniques and concurrent work in syn-
thesizing high-quality specular reflection effects, demonstrating a
consistent improvement of peak signal-to-noise ratio (PSNR) for
both synthetic and real-world scenes, while running at a frame rate
almost identical to vanilla Gaussian splatting.
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1 INTRODUCTION
Novel view synthesis of 3D scenes captured with multiple images
has been a long-standing research topic in computer graphics and
vision. Recently, Neural Radiance Field (NeRF) methods first intro-
duced by Mildenhall et al. [2020] have gained popularity by using
volume rendering with implicit fields via Multi Layer Perceptrons
(MLPs), achieving state-of-the-art visual quality. More recently, 3D
Gaussian Splatting [Kerbl et al. 2023] (3DGS) offers a more com-
pelling solution by modeling radiance fields as sparsely distributed
3D Gaussians, synthesizing novel views at high resolution and real-
time frame rates, while maintaining state-of-the-art visual quality
and competitive training.

However, specular reflection remains challenging for Gaussian
splatting to model. Although 3DGS provides view-dependent col-
oring via per-Gaussian SH (Spherical Harmonics) functions, its
directional frequency is too limited to model specular reflection.
The training process instead hallucinates Gaussians to explicitly
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model the reflected image, which lacks a well-defined spatial po-
sition for non-planar reflectors. As such, specular effects end up
poorly emulated, with a side effect of compromising geometry
quality.

In this paper, we introduce a deferred shading method to ef-
fectively render specular reflection with Gaussian splatting. Our
method associates each Gaussian with a scalar parameter of re-
flection strength and regards the shortest axis of each Gaussian
ellipsoid as its normal vector. The rendering is performed in two
passes. First, a Gaussian splatting pass generates several screen-
space maps of base color, normal, and reflection strength. Second, a
pixel shading pass queries an environment map with the reflection
direction to acquire the specular reflection color, and renders the
final color as the sum of the basic and reflection colors weighted
by the reflection strength. The environment map, per-Gaussian
reflection strength, as well as other Gaussian parameters are all
learned during training.

The seemingly mundane environment map query presents sig-
nificant challenge to the training procedure. As a high frequency
lookup table, the environment map places a high precision demand
on the normal vectors required to compute reflection directions,
while scarcely providing any useful gradient to refine them. On
top of that, we only have a semi-transparent Gaussian soup with
loosely-defined surface. To this end, we present a training algorithm
featuring normal propagation. Specifically, based on the observa-
tion that Gaussians with relative large reflective strength values
have near-correct normal vectors, we expand these reflective Gaus-
sians to propagate their normal vectors to nearby Gaussians. In
this way, after one Gaussian with near-correct normal overlaps a
different Gaussian without one, some shared pixels can also have
near-correct normal, which will get meaningful normal gradients,
helping to optimize the normal of the later Gaussian.

Our deferred shading model is critical to the efficacy of training.
The Gaussian splatting pass blends Gaussian properties like base
color and normal into viewport-aligned textures. The blended input
values on each pixel are used to evaluate reflection and compose
the base and reflection colors into the final color, which feeds gra-
dient back to input values of the same pixel through image color
loss. This creates a gradient channel from color to blended nor-
mal to individual Gaussian normal, facilitating information flow
between the normal of different Gaussians overlapping the same
pixel, which enables normal propagation. This is not possible with
per-Gaussian shading, where gradients propagate from color to
individual Gaussian normal directly and different Gaussians get
independent normal gradients that cannot influence each other.

Experimental results on several previously published datasets
show that our method significantly outperforms state-of-the-art
methods and concurrent work in synthesizing high-quality specular
reflection effects (see Fig. 1), demonstrating a consistent improve-
ment of peak signal-to-noise ratio (PSNR) for both synthetic and
real-world scenes, while running at real-time frame rates almost
identical to vanilla Gaussian splatting. Our method also produces
more accurate normal and environment map estimation (see Fig. 11
and Fig. 12). On the other hand, it does not provide a full geometry-
lighting-material decomposition for inverse rendering or relighting.
Our shading model separately handles mirror reflection and leaves

rough reflection, anisotropic / layeredmaterials, and global illumina-
tion effects to the base SH colors, achieving high-quality rendering
superior to full-decomposition methods in novel view synthesis.

2 RELATEDWORK
Research on novel view synthesis has a long history in computer
graphics and vision, and is still developing rapidly. In this section
we only review the most relevant references. Please refer to [Tewari
et al. 2022; Xie et al. 2022] for comprehensive reviews of the field.

Novel View Synthesis. A variety of methods have been proposed
to synthesize novel views frommultiple images of a static scene [Davis
et al. 2012; Gortler et al. 1996; Levoy and Hanrahan 1996]. Recently,
Neural Radiance Field (NeRF) [Mildenhall et al. 2020] has gained
popularity. NeRF represents the scene as implicit fields of view-
dependent color and density, typically evaluated as a deep MLP, and
synthesizes high-quality images through volumetric ray marching.

Many follow-up research on NeRF try to improve the image qual-
ity (e.g., [Barron et al. 2022; Verbin et al. 2022]), training/rendering
performance (e.g., [Garbin et al. 2021; Müller et al. 2022; Yu et al.
2021]), sparse-view generalization ability (e.g., [Chen et al. 2021;
Deng et al. 2022; Jain et al. 2021]). One notable work [Müller et al.
2022] replaces the deep MLP of classical NeRF with a shallow MLP
featuring multi-resolution hash encoding as input, which enables
rapid training and real-time rendering. As a generic neural net-
work design with applications beyond novel view synthesis, it is
orthogonal to our approach, which does not use neural networks.

Rendering novel views of reflective objects is challenging as the
radiance field becomes high frequency in the view dimension, mak-
ing it difficult to reconstruct from the spatial images typically used
as input. Classical NeRFs assume low frequency view-dependency.
Ref-NeRF [Verbin et al. 2022] extends NeRFs with a novel parame-
terization for view-dependent outgoing radiance and normal vector
regularization. The added dimensions are challenging to optimize,
though, which makes its training time-consuming and leads to
noisy synthesis results.

The radiance field can also be represented by a point cloud [Xu
et al. 2022; Zhang et al. 2022a], which enables unique algorithm de-
signs. Kopanas et al. [2022] formalize hallucinated mirror images as
catacaustics consisting of virtual points inside the reflector. Curved
surfaces are handled using MLPs to adjust the point positions based
on camera movement. However, the training of this MLP is typically
under-constrained due to static input cameras, resulting in unstable
behavior on novel views.

The more recent 3D Gaussian splatting [Kerbl et al. 2023] de-
parts from the volumetric NeRF formulation in favor of a differ-
entiable rasterizer for spatial Gaussians, achieving a distinctive
hard-realtime frame rate at 1080p resolutions. Our approach ex-
tends its Gaussian representation, significantly enhancing specular
reflection effects while maintaining the original training and ren-
dering efficiency.

Inverse Rendering. It is tempting to generalize novel view synthe-
sis to inverse rendering [Boss et al. 2021; Jiang et al. 2023; Srinivasan
et al. 2021; Zhang et al. 2021a,b, 2022b], which aims to completely
decompose geometry, lighting and material, typically employing
a physically-based shading model. While such a scene model can
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Figure 2: Our rendering pipeline. A Gaussian splatting pass is first performed to bake reflection strength, normal, and base color
to screen space maps. In the following shading pass, for each pixel, we use the normal map to compute a reflection direction
and query an environment map for a reflected color. The reflection strength is then used to blend base color and reflection
color into the final result. An image loss is used to back-propagate gradients. Note that there exist many gradient propagation
paths. Here we only illustrate the gradient flow most relevant to reflection fitting.

automatically render a wide range of visual effects including reflec-
tion, its optimization is significantly under-constrained, especially
when starting from a few static images. The corresponding opti-
mization tends to rely on prior assumptions about the scene, such
as material or geometry smoothness, compromising the overall
quality when applied to novel view synthesis.

Recent Signed Distance Field (SDF) methods [Liang et al. 2023;
Liu et al. 2023; Munkberg et al. 2022] utilize the NeRF neural field as
a geometry representation, leading to an elegant inverse rendering
formulation that allows flexible lighting and material changes. The
flexibility comes at a cost, as they inherit the high training cost of
NeRF and the inherent smoothness of neural SDFs tends to over-
smooth geometry details.

The concurrent work of GaussianShader [Jiang et al. 2023] ap-
proaches the inverse rendering goal using a Gaussian-based scene
representation, estimating physically-based BRDF parameters and
a normal vector for each Gaussian. Their method inherits the real-
time performance of 3DGS, albeit with noticeable overhead.

Both our method and GaussianShader tackle the same specular
reflection problem in a Gaussian splatting setting. The key differ-
ence is that we compute reflection on pixels as opposed to Gaussians,
generating more reflection samples for the same rendering cost.
The extra samples stabilize reflection strength and environment
map training by smoothing out gradient, leading to significantly
less noise in the final result. Our per-pixel shading also eliminates
interpolation artifacts caused by discontinuous color change at
Gaussian boundaries.

Deferred Shading. Deferred shading [Deering et al. 1988] is a
classical real-time rendering technique that computes high fre-
quency shading effects like specularity per-pixel in screen space, af-
ter baking scene properties like positions and normal into viewport-
aligned textures. Representing a scene as a neural texture map on
top of 3D meshes, the deferred neural rendering approach [Thies
et al. 2019] first rasterizes the scene into a screen-space feature
map, which is then converted to photo-realistic images based on a

neural network. Both the neural network and the neural texture are
trained end-to-end. Hedman et al. [2021] propose a deferred NeRF
architecture, which renders screen-space diffuse color and feature
vector maps using a deep MLP, followed by another shallow MLP
to predict the view-dependent specular color for each pixel. We
combine deferred shading with 3D Gaussian splatting to effectively
render specular reflection, which also produces accurate estimation
of normal and environment maps.

3 METHOD
3.1 Rendering Model
Our deferred rendering model consists of two passes. The first
is Gaussian splatting. Following the original setting of the 3DGS
renderer [Kerbl et al. 2023], we start with Gaussian parameters
Θ𝑖 , per-Gaussian view-dependent SH colors 𝑐𝑖 (v), and compute
the pixel colors 𝐶 (v). Here 𝑖 is the Gaussian index and v refers to
the view direction. For simplicity, we also parameterize the output
image with v, and treat the splatting process as a blackbox that
blends colors with linear weights 𝐺 :

𝐶 (v) =
∑︁
𝑖

𝑐𝑖 (v)𝐺 (Θ𝑖 , v). (1)

Here the most expensive component is the weights 𝐺 . It is com-
puted at the finest per-Gaussian-per-pixel granularity, is order-
sensitive and requires a sort as a preprocess. With 𝐺 already com-
puted, though, it is very cheap to blend extra per-Gaussian values
alongside 𝑐𝑖 . We apply this to 𝑛𝑖 , the shortest axis of each Gaussian
ellipsoid interpreted as its normal vector, and 𝑟𝑖 , a per-Gaussian
scalar controlling its specular reflection strength:

𝑁 (v) =
∑︁
𝑖

𝑛𝑖𝐺 (Θ𝑖 , v), 𝑅(v) =
∑︁
𝑖

𝑟𝑖𝐺 (Θ𝑖 , v), (2)

where 𝑛𝑖 are flipped as necessary to face the camera.
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Second, a deferred reflection pass composes the final pixel color
𝐶′ (v), detached from Gaussians 𝐺 :

𝐶′ (v) = (1 − 𝑅(v))𝐶 (v) + 𝑅(v)𝐸 ( 2v · 𝑁 (v)𝑁 (v)
| |𝑁 (v) | | − v), (3)

where 𝐸 is a learned environment map queried on the reflection
direction with a bilinear filter.

Fig. 2 illustrates the components used by our rendering model.
The per-Gaussian normal 𝑛𝑖 and reflection strength 𝑟𝑖 are trained
and splatted separately. The splatted images are combined in the
shading pass to compose the final image. This process works en-
tirely in screen space. The environment map is trained entirely
from the final pass, detached from the Gaussians.

3.2 Loss Function and Normal Gradient
When training, we use the same combined image loss L1 and D-
SSIM loss functions as in [Kerbl et al. 2023]:

L = (1 − 𝜆)L1 + 𝜆L𝐷−𝑆𝑆𝐼𝑀 , (4)

where 𝜆 = 0.2 in our implementation.
Handling the normal vector gradient 𝜕L

𝜕𝑁
is a challenge in train-

ing. As the loss function is purely color-based, our normal gradient
ultimately comes from the environment map: 𝜕L

𝜕𝑁
= 𝜕L

𝜕𝐸
𝜕𝐸
𝜕𝑁

. With
𝐸 being a texture query, the only non-zero component of 𝜕𝐸

𝜕𝑁
comes

from the bilinear texture filter. Intuitively, this can be interpreted
as the gradient descent process rotating the reflection direction
towards the environment map texel best matching the expected
pixel color, by updating the underlying 𝑁 . However, the rotation
target is restricted to the four texels participating in the bilinear
texture filter of a particular query, limiting meaningful gradients to
normal vectors already close to the correct value.

Fortunately, our deferred shading model provides an elegant so-
lution. Since we perform the environment lookup at the pixel level,
each Gaussian only needs to cover a few pixels with near-correct
normal to receive meaningful gradients. We leverage this property
to propagate correct normals across neighboring Gaussians, even-
tually expanding to all reflective surfaces we can find. The details
will be explained in the next subsection.

3.3 Training
We bootstrap our training process with a short view-independent
stage by turning off view-dependent color and reflection optimiza-
tion, where reflection strengths 𝑟𝑖 are initialized to 0 and the per-
Gaussian SH color functions 𝑐𝑖 (v) are restricted to order 0, i.e., to
constant terms 𝑐𝑖 (v) = 𝑐𝑖,0. With 𝑟𝑖 = 0, reflection-related opti-
mizations are disabled as relevant gradients have zero magnitude.
This stage lasts for a few thousand iterations, typically taking a few
minutes on a high-end GPU. The optimization process is the same
as in the original 3DGS [Kerbl et al. 2023].

In the following training, we turn on the optimization of per-
Gaussian reflection strength 𝑟𝑖 and environment map. A few Gaus-
sians may get relatively large reflection strength during optimiza-
tion (i.e., 𝑟𝑖 > 0.1). Observing that such reflective Gaussians have
near-correct normal vectors (see Fig. 3), we propose to propagate
their normal vectors to nearby Gaussians. Specifically, when one
Gaussian with near-correct normal overlaps a different Gaussian
without one, some shared pixels can also have near-correct normal,

Step: 10k Step: 14k Step: 18k Step: 22k Step: 26k

Figure 3: The propagation of Gaussian normal and reflection
strength at various training steps.

which will get meaningful normal gradients and help to optimize
the normal of the later Gaussian. To facilitate such propagation,
we periodically raise the opacity of all Gaussians to at least 0.9
and the reflection strength to at least 0.001, then scale up the two
longest axises of reflective Gaussians by 1.5×, leaving the shortest
used-as-normal axises intact. This makes almost every reflective
Gaussian overlap with its neighbors, and the universally-high opac-
ity ensures that every visible Gaussian contributes a significant
magnitude to surface normal and in reciprocal, getting influenced
by meaningfully normal gradients during back propagation. We
call this process normal propagation.

Fig. 3 shows a concrete example of how correct normals propa-
gate as training proceeds. Starting from noisy shortest axis direc-
tions generated by constant color fitting, some randomly-correct
spots first gained reflection strength by step 9000. They then propa-
gate their correct normal vectors to neighboring Gaussians, gradu-
ally spreading over the noisy bumps, and finally yielding a smooth
sphere. The reflection strength map increases early but only starts
approaching the correct value as normal vectors become more
accurate.

The diffuse colors 𝑐𝑖,0 have already been optimized by the view-
independent bootstrap and during reflection training they tend to
over-fit, which can hinder reflective surface discovery. To counter
this effect, we intentionally sabotage the colors of not-yet-reflective
Gaussians with 𝑟𝑖 ≤ 0.1, by adding a ±10% noise whenever normal
propagation is applied. We call this process color sabotage.

Our periodic opacity raise conflicts with the periodic opacity
clamping in original 3D Gaussian Splatting, which clamps opacity
to no more than 0.01 [Kerbl et al. 2023]. The color sabotage also
prevents the color terms from converging. As a workaround, we
interleave opacity-raising periods with opacity-clamping periods
so that they are never applied simultaneously. We also terminate
normal propagation and color sabotage once the number of Gaus-
sians with 𝑟𝑖 > 0.1 stop increasing for a fixed number of iterations,
which indicates that no more specular surfaces can be found. We
only start to optimize higher-order color SH coefficients after this
specular termination criteria has been met, to prevent them from
interfering with reflection training.

4 RESULTS AND EVALUATION
We conduct comprehensive experiments on a workstation with an
i7-13700KF CPU, 32GB memory and an NVIDIA RTX 4090 GPU,
to demonstrate the effectiveness and efficiency of our approach.
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Table 1: Per-scene image quality comparison on synthesized test views.

Shiny Blender [Verbin et al. 2022] Glossy Synthetic [Liu et al. 2023] Real
Datasets

ball car coffee helmet teapot toaster bell cat luyu potion tbell teapot garden sedan toycar
Ref-NeRF 33.16 30.44 33.99 29.94 45.12 26.12 30.02 29.76 25.42 30.11 26.91 22.77 22.01 25.21 23.65

NPC 23.76 24.19 30.39 25.59 41.22 19.76 22.41 25.35 23.68 23.09 19.03 18.21 21.01 24.77 22.84
3DGS 27.65 27.26 32.30 28.22 45.71 20.99 25.11 31.36 26.97 30.16 23.88 21.51 21.75 26.03 23.78

GShader 30.99 27.96 32.39 28.32 45.86 26.28 28.07 31.81 27.18 30.09 24.48 23.58 21.74 24.89 23.76
ENVIDR 41.02 27.81 30.57 32.71 42.62 26.03 30.88 31.04 28.03 32.11 28.64 26.77 21.47 24.61 22.92

Ours, forward 27.64 28.99 31.61 28.01 45.68 24.83 25.74 32.22 27.01 30.25 24.11 23.13 21.49 26.05 23.49

PSNR ↑

Ours, deferred 33.66 30.39 34.65 31.69 47.12 27.02 31.65 33.86 28.71 32.29 28.94 25.36 21.82 26.32 23.83
Ref-NeRF 0.971 0.950 0.972 0.954 0.995 0.921 0.941 0.944 0.901 0.933 0.947 0.897 0.584 0.720 0.633

NPC 0.908 0.898 0.955 0.938 0.994 0.835 0.892 0.921 0.854 0.877 0.742 0.762 0.558 0.711 0.547
3DGS 0.937 0.931 0.972 0.951 0.996 0.894 0.908 0.959 0.916 0.938 0.900 0.881 0.571 0.771 0.637

GShader 0.966 0.932 0.971 0.951 0.996 0.929 0.919 0.961 0.914 0.936 0.898 0.901 0.576 0.728 0.637
ENVIDR 0.997 0.943 0.962 0.987 0.995 0.922 0.954 0.965 0.931 0.960 0.947 0.957 0.561 0.707 0.549

Ours, forward 0.939 0.941 0.968 0.947 0.996 0.919 0.909 0.964 0.911 0.938 0.904 0.891 0.566 0.767 0.626

SSIM ↑

Ours, deferred 0.979 0.962 0.976 0.971 0.997 0.943 0.962 0.976 0.936 0.957 0.952 0.936 0.581 0.773 0.639
Ref-NeRF 0.166 0.050 0.082 0.086 0.012 0.083 0.102 0.104 0.098 0.084 0.114 0.098 0.251 0.234 0.231

NPC 0.237 0.120 0.119 0.156 0.013 0.226 0.203 0.121 0.101 0.174 0.243 0.246 0.302 0.311 0.347
3DGS 0.162 0.047 0.079 0.081 0.008 0.125 0.104 0.062 0.064 0.093 0.125 0.102 0.248 0.206 0.237

GShader 0.121 0.044 0.078 0.074 0.007 0.079 0.098 0.056 0.064 0.088 0.122 0.091 0.274 0.259 0.239
ENVIDR 0.020 0.046 0.083 0.036 0.009 0.081 0.054 0.049 0.059 0.072 0.069 0.041 0.263 0.387 0.345

Ours, forward 0.156 0.044 0.081 0.082 0.008 0.091 0.104 0.059 0.068 0.096 0.124 0.096 0.252 0.221 0.249

LPIPS ↓

Ours, deferred 0.098 0.033 0.076 0.049 0.005 0.081 0.046 0.040 0.053 0.075 0.067 0.067 0.247 0.208 0.231

As an ablation study for our core deferred reflection design, we
also implement a forward-shading alternative, which computes
reflection colors on individual Gaussians and splats them to the final
image. The alternative forward renderer is used for both training
and testing and other training designs remain unchanged.

Dataset. We conduct evaluation on several datasets with specular
objects, including two synthetic datasets: Shiny Blender [Verbin
et al. 2022] and Glossy Synthetic [Liu et al. 2023], and one real
captured dataset used by Ref-NeRF [Verbin et al. 2022]. We also use
the non-specular NeRF Synthetic [Mildenhall et al. 2020] dataset as
a regression test.

Implementation details. For real scenes, we use a spherical do-
main 𝑀 to cover the foreground object. We restrict our deferred
reflection stage to Gaussians inside𝑀 to reduce interference from
the background during training. Based on our observations, back-
ground objects that are only captured in a limited amount of views
exhibit a similar behavior as reflective objects, which interferes
with our environment map fitting.

Baselines and metrics. We compare our method against the fol-
lowing baselines: 3DGS: vanilla 3D Gaussian Splatting [Kerbl et al.
2023] with no special treatment for reflection; GShader [Jiang et al.
2023]: a method that shades each Gaussian with a reflection-aware
shader, which can be considered as a differentiable forward ren-
dering pipeline; ENVIDR [Liang et al. 2023]: a SDF-based method
using neural rendering for inverse rendering; Ref-NeRF [Verbin

et al. 2022]: a NeRF-based method focusing on reflective objects
rendering; NPC: Neural Point Catacaustics [Kopanas et al. 2022]:
a renderer that warps a point-based hallucinated reflection using
MLPs. All methods are applied to the same input data, except for
NPC, which requires a mask covering all reflectors for each input
image. We use the foreground mask estimated by [Kirillov et al.
2023] as a substitute. We present quantitative results measured with
three standard metrics: PSNR, SSIM and LPIPS.

To demonstrate the accuracy normal and light reconstruction,
we also compare our method with SDF-based inverse rendering
methods: ENVIDR [Liang et al. 2023] and NVDiffRec [Munkberg
et al. 2022]. We use Mean Angular Error in degrees (MAE◦) to
evaluate the normal reconstruction accuracy. We evaluate envi-
ronment map reconstruction accuracy with LPIPS to mitigate the
fundamental ambiguity between albedo, roughness and light.

4.1 Comparisons with baselines
Image quality. Table 1 presents the quantitative comparison re-

sults on three datasets. Our method demonstrates a clear advantage
in terms of image quality on synthetic datasets and also shows
comparable results on real datasets. The visual comparisons on
synthetic and real datasets are shown in Fig. 8, Fig. 9 and Fig. 10.
Ref-NeRF [Verbin et al. 2022] shows some regular patterns in the
toaster scene. The results from NPC [Kopanas et al. 2022] are noisy
and tend to exhibit a diffuse texture. The MLP-predicted warping
field is severely strained when the camera viewpoint has a high
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Table 2: Normal and light reconstruction quality (evaluated
by MAE◦ and LPIPS respectively) comparisons on the Shiny
Blender Dataset.

GShader NVDiffRec ENVIDR Ours
MAE◦ ↓ 22.31 17.02 4.618 4.871
LPIPS ↓ 0.621 0.636 0.615 0.511

Table 3: Training time and rendering frame rates.

Shiny Blender Real scenes
Training time FPS Training time FPS

Ref-NeRF 19h 0.06 27h 0.02
NPC 12h 4 23h 1

ENVIDR 3.2h 3 4.7h 1
3DGS 6min 277 17min 84

GShader 60min 51 72min 31
Ours 16min 251 47min 80

Table 4: Number of Gaussians in the ball, car, helmet and
toaster scenes of the Shiny Blender Dataset.

ball car helmet toaster
Ours, deferred 27.2k 117k 36k 100k
Ours, forward 76.4k 205k 62k 236k

GShader 76.5k 316k 106k 336k
3DGS 199k 307k 100k 342k

degree of freedom and the reflector contains both diffuse and spec-
ular components. The results from 3DGS [Kerbl et al. 2023] and
GaussianShader [Jiang et al. 2023] are blurred on reflection surfaces
or show incorrect reflections. The results from ENVIDR [Liang et al.
2023] over-smooth some local details. Our method produces much
smoother-looking surfaces without blurring the reflection details,
and stays closer to the ground truth. In close-up views, our result
exhibits significantly less visible Gaussian boundaries, typically
manifesting as oval-shaped color blobs.

Normal reconstruction. Behind the scenes, the quality improve-
ment is backed by improved fitting quality for surface normal and
environment map. Table 2 lists the dataset-averaged mean angular
error of normal maps on the Shiny Blender Dataset. Despite our
method only focusing on the normal of specular surfaces, we still
achieve quality comparable to ENVIDR [Liang et al. 2023]. Fig. 11
compares the normal vectors predicted by our method, ENVIDR,
Ref-NeRF [Verbin et al. 2022], and GaussianShader [Jiang et al.
2023], alongside ground truth and the 3DGS shortest-axis initial-
ization. As illustrated, our method creates smooth results while
preserving sharp boundaries from color loss terms alone, like the
sharp separation between the saucer and the cup in the coffee scene.
ENVIDR, based on the SDF representation, provides nearly perfect
normals for the sphere but fails on detailed geometry, such as car
wheel rims and thin cup walls, due to the smoothness of SDF. Ref-
NeRF produces sharp, yet noisy results. GaussianShader filters out
the noise with a smoothness prior, which unfortunately also blurs
out object boundaries like between the saucer and the cup in the
coffee scene, and shows some surface defects on the ball.

Forward rendering

Deferred rendering

Figure 4: Quality comparison between forward and deferred
designs. From left to right: teapot, bell, tbell.

Step: 10k Step: 14k Step: 18k Step: 22k Step: 26k

w/o normal propagation

w/o color sabotage

Figure 5: Normal maps at various training steps with one
algorithm component disabled.

Light reconstruction. We quantitatively compare the quality of
light reconstruction in Table 2. We achieve the best quality thanks
to our simple rendering model, which reduces the ill-posedness
of the inverse problem. We also visualize the environment maps
reconstructed by GaussianShader, ENVIDR, NVDiffRec, and our
method. To compensate for the fundamental light-albedo ambiguity,
we equalize the total energy of the two environment maps before
comparison. As illustrated in Fig. 12, the per-pixel reflection allows
our method to reconstruct a significantly less noisy environment
map with almost full directional coverage, whereas GaussianShader
can only reconstruct a few texels for each Gaussian, leading to a
noisy image with many holes. For SDF-based methods (ENVIDR
and NVDiffRec), they struggle to perfectly decompose lighting,
geometry, and material, leading to non-robust lighting estimation.

Efficiency. Table 3 lists the dataset-averaged training time and
rendering frame rate of all tested methods. Frame rate values are
computed as the reciprocal of averaged frame render time to re-
duce the impact of unfairly large numbers on simple scenes. As
a reflection-oblivious reference, 3DGS [Kerbl et al. 2023] serves
as the performance upper-bound. The NeRF-based method Ref-
NeRF [Verbin et al. 2022], SDF-based method ENVIDR [Liang et al.
2023], and point-based method NPC [Kopanas et al. 2022] require
dozens of hours to train. GaussianShader [Jiang et al. 2023] requires
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Table 5: The fitting quality impact of disabling various algo-
rithm components.

Ablations PSNR ↑ SSIM ↑ LPIPS ↓
Ours 33.66 0.979 0.098

w/o propagation 27.85 0.938 0.159
w/o sabotage 30.00 0.959 0.128

Table 6: Regression test on non-specular scenes.

NeRF Synthetic
drums ficus hotdog lego mic ship

PSNR ↑
3DGS 25.10 28.14 35.52 32.94 31.55 29.06
Ours 25.31 28.03 35.58 32.94 31.97 29.07

SSIM ↑
3DGS 0.947 0.965 0.983 0.979 0.986 0.897
Ours 0.946 0.963 0.982 0.978 0.987 0.894

LPIPS ↓
3DGS 0.055 0.540 0.032 0.025 0.028 0.124
Ours 0.055 0.055 0.033 0.026 0.028 0.129

an hour to train and renders several times slower than vanilla 3DGS.
Our method trains to convergence in under an hour and renders
at frame rates almost identical to the 3DGS upper bound. We also
compare the final number of Gaussians generated by each method
in Table 4. By deferring shading to pixels, our method no longer
needs to split Gaussians to meet the shading frequency demand.
We are able to fit the same scene with significantly less Gaussians,
which also improves our real-time performance.

4.2 Ablation Study
We conduct various ablation studies to validate the impact of key
design choices. Specifically, we compare deferred with forward
shading, assess the necessity of normal propagation and color sab-
otage. We also perform a regression test on the non-specular NeRF
Synthetic Dataset [Mildenhall et al. 2020].

Deferred shading versus forward shading. As shown in Table 1,
using deferred shading in our method results in better PSNR, SSIM
and LPIPS, compared to forward shading in all scenes. As illustrated
in Fig. 4, deferred shading produces sharp reflections with pixel-
level details like the window frames in the rightmost column. The
leftmost teapot scene also demonstrates a more complete recon-
struction of the reflected environment, producing precise curtain
shapes while the forward pipeline fails to capture. We summarize
the merits of deferred shading for inverse rendering as two-fold:

• The pixel-precise normal maps alleviate the impact of impre-
cise Gaussian normal, while also allowing Gaussians with
correct normal to propagate gradients to incorrect ones.

• The environment map is more closely linked to the image
loss, which accelerates its optimization and in turn helps
guiding normal vectors towards the correct direction.

Necessity of normal propagation and color sabotage. With the
respective algorithm component disabled, Fig. 5 shows the normal
maps at various training steps. Table 5 evaluates the quantitative

Base color Refl. color Refl. strength Result

Figure 6: Decomposition results of our method. From top to
bottom: ball, potion, tbell.

Step: 12k Step: 24k Step: 36k Step: 48k Step: 60k Step: 72k

Rendering Reflection strength Normal map

Figure 7: Limitations. Top row: inconsistent treatment of car
windows. Bottom row: slow convergence on concave bell.

image metrics after convergence. Without normal propagation,
the normal map stays almost unchanged for the entire training.
Without color sabotage, normal propagates significantly slower
and converges prematurely, outpaced by overfit Gaussian colors.
Both result in a significant drop of final image quality.

Decomposition results. We visualize the base color map, reflection
color map, reflection strength map and final results in Fig. 6. Our
method precisely captures the specular reflections while leaving
other effects to base SH colors, like the rough bands in the sphere
scene and the glossy rim of the tbell scene.

Regression in non-specular scene. Table 6 compares our method
with plain 3DGS [Kerbl et al. 2023] on non-specular scenes. We
are able to achieve an almost indistinguishable quality with min-
imal regression. As we use the same image loss function with no
extra regularization, we are able to correctly estimate the reflection
strength as zero for diffuse objects. While our normal propagation
depends on reflection, the SH shading we retain does not use normal
at all and normal quality on diffuse objects is inconsequential.

4.3 Limitations
Our method can handle at most one layer of reflective materials per
pixel, which is inherited from traditional deferred shading. The car
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windows in the top row of Fig. 7 show two different behaviors of our
algorithm on transparent objects. The front window converges to a
purely reflective surface and the side windows converges to purely
transparent surfaces. A fundamental solution would first require
a way to reliably create Gaussians on the transparent windows
during initialization.

Normal propagation works less efficient on concave scenes, like
the bell scene in the bottom row of Fig. 7. Training still converges
but takes considerably more time. A better designed optimization
strategy can potentially fix this issue.

5 CONCLUSION
We have presented a high-quality deferred Gaussian splatting ren-
derer specializing in reflection. It demonstrates stable training and
competitive visual quality at almost identical frame rates to vanilla
3D Gaussian splatting, also producing accurate surface normal and
environment maps.

Our deferred shading approach may open up many possibili-
ties for future exploration. It would be interesting to explore more
creative splits of the rendering equation in the context of Gauss-
ian splatting. Our pipeline can also be extended to higher qual-
ity reflection algorithms beyond an environment map, including
screen-space reflections [McGuire and Mara 2014] and hardware
ray tracing. Generalizing 3D Gaussians and differentiable rendering
to such methods can lead to significantly better reflection qualities.
It is also interesting to explore the possibility of adding a physically-
based roughness, generalizing our method to glossy materials.
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Ref-NeRFGShader 3DGSOursGround-truth NPC

Figure 8: Qualitative comparisons on synthetic scenes. From top to bottom: ball, coffee, helmet, toaster.

Ground-truth

Ours 3DGS Ref-NeRF

NPCGShader Ground-truth NPCGShader

Ours 3DGS Ref-NeRF

Ground-truth NPCGShader

Ours 3DGS Ref-NeRF

Figure 9: Qualitative comparisons on real scenes. From left to right: sedan, garden, toycar.
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ENVIDROursGround-truth ENVIDROursGround-truth

Figure 10: Qualitative comparisons between ENVIDR [Liang et al. 2023] and our method on luyu and coffee synthetic scenes.

Ref-NeRFGShader 3DGSOursGround-truth ENVIDR

Figure 11: Qualitative comparisons of normal produced by different methods.

OursReference ENVIDR NVDiffRecGShaderScenes

Figure 12: Qualitative comparisons of environment maps estimated by different methods.
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